Lesson 2.4 Worksheet

Name:

Use the diagram to determine if the statement is *true* or *false*.

- 1.) Planes W and X intersect at \overleftarrow{KL} .
- 2.) Points Q, J, and M are collinear.
- 3.) Points K, L, M, and R are coplanar.
- 4.) \overrightarrow{MN} and \overrightarrow{RP} intersect.
- 5.) $\overrightarrow{RP} \perp$ plane W.
- 6.) \overrightarrow{JK} lies in plane X.
- 7.) \angle PLK is a right angle.
- 8.) \angle NKL and \angle JKM are vertical angles.
- 9.) \angle NKJ and \angle JKM are supplementary angles.
- 10.) \angle JKM and \angle KLP are congruent angles.
- 11.) **Multiple Choice:** Choose the diagram at right showing \overrightarrow{LN} , \overrightarrow{AB} and \overrightarrow{DC} intersecting at point M, \overrightarrow{DC} bisecting \overrightarrow{LN} , and $\overrightarrow{DC} \perp \overrightarrow{LN}$.

Decide whether the statement is true or false. If it is false, give a giving a counterexample by sketching a diagram or writing a sentence.

- 12.) Through any three points, there exists exactly one line.
- 13.) A point can be in more than one plane.

14.) Any two planes intersect.

15.) Sketch a diagram showing \overleftarrow{XY} intersecting \overleftarrow{WV} intersecting at point T, so that $\overleftarrow{XY} \perp \overleftarrow{WV}$. In you diagram, does \overline{WT} have to be congruent to \overline{TV} ?

16.) Multiple Choice: Which of the following statements cannot be assumed from the diagram?

- A Points *A*, *B*, *C*, and *E* are coplanar.
- **B** Points *F*, *B*, and *G* are collinear.
- $\textcircled{C} \quad \overleftrightarrow{HC} \perp \overleftrightarrow{GE}$
- (**D**) \overrightarrow{EC} intersects plane *M* at point *C*.

Use the diagram below to write an example of each postulate.

- 17.) "A line contains at least two points."
- 18.) "If two lines intersect, then their intersection is exactly one point."
- 19.) "Through any three noncollinear points there exists exactly one plane."

